Large graphs of diameter two and given degree
نویسنده
چکیده
Let r(d, 2), C(d, 2), and AC(d, 2) be the largest order of a regular graph, a Cayley graph, and a Cayley graph of an Abelian group, respectively, of diameter 2 and degree d. The best currently known lower bounds on these parameters are r(d, 2) ≥ d2 − d + 1 for d − 1 an odd prime power (with a similar result for powers of two), C(d, 2) ≥ (d+ 1)2/2 for degrees d = 2q − 1 where q is an odd prime power, and AC(d, 2) ≥ (3/8)(d2 − 4) where d = 4q − 2 for an odd prime power q. Using a number theory result on distribution of primes we prove, for all sufficiently large d, lower bounds on r(d, 2), C(d, 2), and AC(d, 2) of the form c · d2 − O(d1.525) for c = 1, 1/2, and 3/8, respectively. We also prove results of a similar flavour for vertextransitive graphs and Cayley graphs of cyclic groups.
منابع مشابه
Diameter Two Graphs of Minimum Order with Given Degree Set
The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملDegree distance index of the Mycielskian and its complement
In this paper, we determine the degree distance of the complement of arbitrary Mycielskian graphs. It is well known that almost all graphs have diameter two. We determine this graphical invariant for the Mycielskian of graphs with diameter two.
متن کاملOn Large Graphs with Given Degree and Diameter
The degree/diameter problem is to determine the largest possible number of vertices in a graph of given maximum degree and given diameter. It is well known that the general upper bound, called Moore bound, for the order of such graphs is attainable only for certain special values of degree and diameter. Finding better upper bounds for the maximum possible number of vertices, given the other two...
متن کاملMoore graphs and beyond: A survey of the degree/diameter problem
The degree/diameter problem is to determine the largest graphs or digraphs of given maximum degree and given diameter. General upper bounds – called Moore bounds – for the order of such graphs and digraphs are attainable only for certain special graphs and digraphs. Finding better (tighter) upper bounds for the maximum possible number of vertices, given the other two parameters, and thus attack...
متن کاملOn Harmonic Index and Diameter of Unicyclic Graphs
The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)} $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfra...
متن کامل